
1

Introduction to MATLAB®
for the Physics Lab

Table of Contents
Help/Docs ... 1
Variables ... 2
Vectors ... 2
Matrices .. 4
save/clear/load ... 5
Scalar Operations ... 5
Built-in functions ... 7
Transpose .. 8
Addition and Subtraction ... 9
Element-wise Functions ... 10
Functions for automatic initialization .. 10
Vector and Matrix Indexing .. 13
The Colon (:) operator ... 15
Basic Plotting ... 15
Saving Figures, inserting Legends and titles .. 23
Visulaizing matrices .. 23
Surface Plot ... 24
Contour plot .. 26
Other specialized plotting funcitons ... 27
Systems of Linear Equations ... 32
Linear Algebra ... 33
Polynomials ... 33
Polynomial Fitting .. 34
Nonlinear Root Finding ... 35
Creating functions ... 36
Numerical Differentiation and Integration ... 40
Solving Differential equation .. 42
References ... 48

We will go over some of the basic functions and the methods we looked during the class. If you have questions please
e-mail me ahaje092@uottawa.ca.

Help/Docs
We can use help or doc command to explore an unknown fucntion or just to find out all the arguments and
check for examples. doc command will open up a new window, where as help will show inline results.

help sin

 SIN Sine of argument in radians.
 SIN(X) is the sine of the elements of X.

 See also ASIN, SIND.

 Overloaded methods:

mailto:zahir@uottawa.ca

Introduction to MAT-
LABÈ for the Physics Lab

2

 sym/sin
 codistributed/sin
 gpuArray/sin

 Reference page in Help browser
 doc sin

Variables
%To create variables simply assign a value to a name.

var1 = 5.3

var1 =

 5.3000

A variable can be given a value explicitly

a = 10

a =

 10

Or as a function of explicit values and existing variables

c = 1.3*45-2*a

c =

 38.5000

To suppress output, end the line with a semicolon

varSuppressed = 13/3;

When solving a large problem try to use meaningful names for the variables. For example, instead of just
using a and b, use forceTotal to describe the total force, and unitRotOp to represent an an unitary operator
matrix. Note how I have using capitalization for better readability.

Vectors
The strength of MATLAB is in the matrix operation. Using matrix and vector allows us to do complicated
calculations on large set of data usinga single line of command. We will see some examples later. Avoid
using for..loops. These are terribly slow.

To create a row vector use

Introduction to MAT-
LABÈ for the Physics Lab

3

row = [1 2 5.4 -6.6] %or
row = [1, 2, 5.4, -6.6];

row =

 1.0000 2.0000 5.4000 -6.6000

To create column vector use

column = [4;2;7;4]

column =

 4
 2
 7
 4

You can tell the difference between a row and a column vector by:

Å Looking in the workspace

Å Displaying the variable in the command window

Å Using the size function

size(row)

ans =

 1 4

size(column)

ans =

 4 1

To get vectors length use the length function

length(row)

ans =

 4

length(column)

Introduction to MAT-
LABÈ for the Physics Lab

4

ans =

 4

Matrices
Make matrices by merging the commands of row and column vectors

a = [1 2;3 4]

a =

 1 2
 3 4

or by concatenating vectors or matrices (NOTE: the output differecnes below)

a = [1 2]

a =

 1 2

b = [3 4]

b =

 3 4

c = [5;6]

c =

 5
 6

d = [a;b]

d =

 1 2
 3 4

e = [d c]

Introduction to MAT-
LABÈ for the Physics Lab

5

e =

 1 2 5
 3 4 6

f = [[e e];[a b a]]

f =

 1 2 5 1 2 5
 3 4 6 3 4 6
 1 2 3 4 1 2

You can create a vector of strings as well. Strings are character vectors

str = ['Hello, I am ' 'John'];

save/clear/load
Use save to save variables to a file

save myFile a b
% saves variables a and b to the file myfile.mat

myfile.mat file is saved in the current directory Default working directory is \MATLAB Make sure youôre
in the desired folder when saving files.

Use clear to remove variables from environment

clear a b
% look at workspace, the variables a and b are gone

Use load to load variable bindings into the environment

load myFile
% look at workspace, the variables a and b are back

Can do the same for entire environment

save myenv; clear all; load myenv;

Scalar Operations
Arithmetic operations (+,-,*,/)

7/45

ans =

 0.1556

Introduction to MAT-
LABÈ for the Physics Lab

6

(1+i)*(2+i)

ans =

 1.0000 + 3.0000i

1 / 0

ans =

 Inf

0 / 0

ans =

 NaN

Exponentiation (^)

4^2

ans =

 16

(3+4*j)^2

ans =

 -7.0000 +24.0000i

((2+3)*3)^0.1

ans =

 1.3110

3(1+0.7) gives an error. multiplication has to explicitely stated

To clear command window

clc

To clear all variables

Introduction to MAT-
LABÈ for the Physics Lab

7

clear all

Built-in functions
MATLAB has an enourmous library functions. It is really really big and quite comprehensive. Covers
functions from basic algebra to algebraic number theory, from numeric calculus to system dynamics. Of-
course there are also a lot of free user defined functions people have created which can be downloaded.

sqrt(2)

ans =

 1.4142

log(2)

ans =

 0.6931

log10(0.23)

ans =

 -0.6383

cos(1.2)

ans =

 0.3624

atan(-.8)

ans =

 -0.6747

exp(2+4*i)

ans =

 -4.8298 - 5.5921i

Introduction to MAT-
LABÈ for the Physics Lab

8

round(1.4)

ans =

 1

floor(3.3)

ans =

 3

ceil(4.23)

ans =

 5

angle(i) % note that angles are in radian by default
abs(1+i)

ans =

 1.5708

ans =

 1.4142

besselj(1, 5)

ans =

 -0.3276

Transpose
The transpose operators turns a column vector into a row vector and vice versa

a = [1 2 3 4+i];
transpose(a)

ans =

Introduction to MAT-
LABÈ for the Physics Lab

9

 1.0000 + 0.0000i
 2.0000 + 0.0000i
 3.0000 + 0.0000i
 4.0000 + 1.0000i

a'

ans =

 1.0000 + 0.0000i
 2.0000 + 0.0000i
 3.0000 + 0.0000i
 4.0000 - 1.0000i

.' gives the Hermitian-transpose, i.e. transposes and conjugates all complex numbers

a.'

ans =

 1.0000 + 0.0000i
 2.0000 + 0.0000i
 3.0000 + 0.0000i
 4.0000 + 1.0000i

Addition and Subtraction
Addition and subtraction are element-wise; sizes must match (unless one is a scalar):

row = [1 2 5.4 -6.6];
column = [4;2;7;4];
% use the transpose to make size compatatible
c = row' + column
c = row + column'
% Can sum up or multiply elements of vector
s = sum(row)
p = prod(row)

c =

 5.0000
 4.0000
 12.4000
 -2.6000

c =

 5.0000 4.0000 12.4000 -2.6000

Introduction to MAT-
LABÈ for the Physics Lab

10

s =

 1.8000

p =

 -71.2800

Element-wise Functions
All the functions that work on scalars also work on vectors. This is the most important characteristics of
MATLAB. This allows us to think large matrix as a scalar and do not need loop through each element
to apply a function

t = [1 2 3];
f = exp(t); %is the same as
f = [exp(1) exp(2) exp(3)];

Operators (* / ^) have two modes of operation: element-wise and standard To do element-wise operations,
use the dot before the operation: .*, ./, .^ BOTH dimensions must match (unless one is scalar)!

a = [1 2 3];b = [4;2;1];
a.*b'
a./b'
a.^(b')

ans =

 4 4 3

ans =

 0.2500 1.0000 3.0000

ans =

 1 4 3

Multiplication can be done in a standard way or element-wise Standard multiplication (*) is either a dot
- product or an outer-product. Remeber from the linear algebra that the inner dimensions must match !!!
Left and right division (/ \) is same as multiplying by inverse

Functions for automatic initialization
o = ones(1,10) %row vector with 10 elements, all 1

Introduction to MAT-
LABÈ for the Physics Lab

11

o =

 1 1 1 1 1 1 1 1 1 1

z = zeros(23,1) % column vector with 23 elements, all 0

z =

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

r = rand(1,45) % row vector with 45 elements (uniform [0,1])

r =

 Columns 1 through 7

 0.5938 0.2827 0.1552 0.0007 0.2836 0.5508 0.8709

 Columns 8 through 14

 0.0423 0.9047 0.1310 0.8337 0.8005 0.9179 0.1373

 Columns 15 through 21

 0.5047 0.4050 0.1736 0.5752 0.6062 0.2144 0.5199

 Columns 22 through 28

Introduction to MAT-
LABÈ for the Physics Lab

12

 0.9892 0.4899 0.6949 0.4114 0.0348 0.2928 0.8014

 Columns 29 through 35

 0.3465 0.0833 0.5111 0.3668 0.7395 0.5247 0.8045

 Columns 36 through 42

 0.8169 0.1895 0.1237 0.8210 0.6379 0.0161 0.8960

 Columns 43 through 45

 0.5154 0.5445 0.6064

n = nan(1,69)
% row vector of NaNs (useful for representing uninitialized variables)

n =

 Columns 1 through 13

 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

 Columns 14 through 26

 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

 Columns 27 through 39

 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

 Columns 40 through 52

 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

 Columns 53 through 65

 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

 Columns 66 through 69

 NaN NaN NaN NaN

To initialize a linear vector of values use linspace

a = linspace(0,10,5) % starts at 0, ends at 10 (inclusive), 5 values

a =

 0 2.5000 5.0000 7.5000 10.0000

Introduction to MAT-
LABÈ for the Physics Lab

13

Can also use colon operator (:)

b = 0:2:10 % starts at 0, increments by 2, and ends at or before 10
% increment can be decimal or negative
c = 1:5 % if increment isn’t specified, default is 1

b =

 0 2 4 6 8 10

c =

 1 2 3 4 5

To initialize logarithmically spaced values use logspace, see help

Vector and Matrix Indexing
MATLAB indexing starts with 1, not 0 a(n) returns the nth element

a = [13 5 9 10];
a(1)
a(4)

ans =

 13

ans =

 10

The index argument can be a vector.

x = [12 13 5 8 9 10];
a = x(2:3) % is same as a = [13 5]
a = x(2:5:2) % is same as a = [13 8]
b = x(1:end-1)

a =

 13 5

a =

Introduction to MAT-
LABÈ for the Physics Lab

14

 13

b =

 12 13 5 8 9

for Matrix you will have to indiciate both row and column numeber

A = rand(5)
A(1:3,1:2) % specify contiguous submatrix
A([1 5 3], [1 4]) % specify rows and columns

A =

 0.7604 0.3320 0.1295 0.4372 0.1568
 0.8553 0.8397 0.8799 0.3798 0.3260
 0.3829 0.3717 0.0441 0.9797 0.3141
 0.0846 0.8282 0.6867 0.3990 0.8945
 0.7339 0.1765 0.7338 0.4402 0.2470

ans =

 0.7604 0.3320
 0.8553 0.8397
 0.3829 0.3717

ans =

 0.7604 0.4372
 0.7339 0.4402
 0.3829 0.9797

To select rows or columns of a matrix, use the :

c = [12 2; -2 13];
d = c(1,:)
e = c(:,2)
c(2,:) = [3 6]; %replaces second row of c

d =

 12 2

e =

 2

Introduction to MAT-
LABÈ for the Physics Lab

15

 13

To get the minimum value and its index:

vec = [5 3 1 9 7];
[minVal,minInd] = min(vec)

% *max* works the same way
% To find any the indices of specific values or ranges
ind = find(vec == 9);
ind = find(vec > 2 & vec < 6);

minVal =

 1

minInd =

 3

The Colon (:) operator
This is a versatile operator. See the following table

Basic Plotting
x = linspace(0,10*pi,1000);
y = exp(- 0.1*x).* sin(x);
plot(x, y)

Introduction to MAT-
LABÈ for the Physics Lab

16

Can change the line color, marker style, and line style by adding a string argument

x = linspace(0,10*pi,250);
y = exp(- 0.1*x).* sin(x);
plot(x,y,'r.-')

Introduction to MAT-
LABÈ for the Physics Lab

17

Everything on a line can be customized . Here we will use a vector of [R G B] values to define color

plot(x,y,'--s','LineWidth',2, 'Color', [1 0 0], 'MarkerEdgeColor','k', 'MarkerFaceColor','g', 'MarkerSize',10)

Introduction to MAT-
LABÈ for the Physics Lab

18

The same syntax applies for semilog and loglog plots

x = -pi:pi/100:pi;
y = cos(4*x).*sin(10*x).*exp(-abs(x));
semilogx(x,y,'k-')
semilogy(x, y,'r.-')
loglog(x, exp(x), 'b.-.')

Introduction to MAT-
LABÈ for the Physics Lab

19

We can plot in 3 dimensions just as easily as in 2

time = 0:0.001:4*pi;
x = sin(time);
y = cos(time);
z = time;
plot3(x,y,z,'k','LineWidth',2);
zlabel('Time');

% Can set limits on all 3 axes
% xlim, ylim, zlim

Introduction to MAT-
LABÈ for the Physics Lab

20

Multiple Plots in one Figure

income = [3.2,4.1,5.0,5.6];
outgo = [2.5,4.0,3.35,4.9];
subplot(2,1,1); plot(income)
title('Income')
subplot(2,1,2); plot(outgo)
title('Outgo')

Introduction to MAT-
LABÈ for the Physics Lab

21

Subplots in Quadrants The following illustration shows four subplot regions and indicates the command
used to create each.

figure
subplot(2,2,1)
text(.5,.5,{'subplot(2,2,1)';'or subplot 221'},...
 'FontSize',14,'HorizontalAlignment','center')
subplot(2,2,2)
text(.5,.5,{'subplot(2,2,2)';'or subplot 222'},...
 'FontSize',14,'HorizontalAlignment','center')
subplot(2,2,3)
text(.5,.5,{'subplot(2,2,3)';'or subplot 223'},...
 'FontSize',14,'HorizontalAlignment','center')
subplot(2,2,4)
text(.5,.5,{'subplot(2,2,4)';'or subplot 224'},...
 'FontSize',14,'HorizontalAlignment','center')

Introduction to MAT-
LABÈ for the Physics Lab

22

Asymmetrical Subplots The following combinations produce asymmetrical arrangements of subplots.

figure
subplot(2,2,[1 3])
text(.5,.5,'subplot(2,2,[1 3])',...
 'FontSize',14,'HorizontalAlignment','center')
subplot(2,2,2)
text(.5,.5,'subplot(2,2,2)',...
 'FontSize',14,'HorizontalAlignment','center')
subplot(2,2,4)
text(.5,.5,'subplot(2,2,4)',...
 'FontSize',14,'HorizontalAlignment','center')

Introduction to MAT-
LABÈ for the Physics Lab

23

Saving Figures, inserting Legends and titles
Figures can be saved in many formats. The common ones are: * .fig preserves all information and is matlab
* .JPEG compressed image. use this if you want to insert to a MS Office document * .eps encapsulated
post script: high-quality scaleable format. * .pdf pdf format can be used in latex

Check the MATLAB plot documentation on how to insert legend and axis and plot titles. You can get
more details about legend by typing doc legend

Visulaizing matrices
mat = reshape(1:10000,100,100);
imagesc(mat); % automatically scales the values to span the entire colormap
colorbar % adds the colorbar legend.
% note how the plot is made as a subplot and in the subplot(2,2,4)
% for a new plot you will use the fiugre command to open an empty plot
% space

Introduction to MAT-
LABÈ for the Physics Lab

24

Surface Plot
figure()
x = -pi:0.1:pi; % make x and y vectors
y = -pi:0.1:pi;
[X,Y] = meshgrid(x,y); %(meshgrid takes in two vectors and return two matrix
% with x and y points;
Z = sin(X).*cos(Y); % calculate the value of the funciton
surf(X,Y,Z) % the surface plot
figure() % new figure window
surf(X,Y,Z)
shading interp % using this command makes a smoother plot by interpolating
% between points.

Introduction to MAT-
LABÈ for the Physics Lab

25

Introduction to MAT-
LABÈ for the Physics Lab

26

Contour plot
You can make surfaces two-dimensional by using contour

x = -pi:0.1:pi; % make x and y vectors
y = -pi:0.1:pi;
[X,Y] = meshgrid(x,y); %(meshgrid takes in two vectors and return two matrix
% with x and y points;
Z = sin(X).*cos(Y); % calculate the value of the funciton
contour(X,Y,Z,'LineWidth',2)
hold on %holds on the plot for next plot to be overlayed on top of the
% existing one
mesh(X, Y, Z) % shows the mesh points of the calulated values
% next few lines will create a new plot show the surface plot and overlap
% the contour plot on it.
figure()
surf(X,Y,Z)
shading interp
hold on
contour(X,Y,Z,'LineWidth',2)
hold off % to take the hold off

Introduction to MAT-
LABÈ for the Physics Lab

27

Other specialized plotting funcitons
MATLAB has a lot of specialized plotting functions (check documentations for more details to make polar
plots

figure
polar(0:0.01:2*pi,cos((0:0.01:2*pi)*2))

Introduction to MAT-
LABÈ for the Physics Lab

28

to make bar graphs

figure
bar(1:10,rand(1,10));

Introduction to MAT-
LABÈ for the Physics Lab

29

to add velocity vectors to a plot

figure
[X,Y] = meshgrid(1:10,1:10);
quiver(X,Y,rand(10),rand(10));

Introduction to MAT-
LABÈ for the Physics Lab

30

stairs-plot piecewise constant functions

figure
stairs(1:10,rand(1,10));

Introduction to MAT-
LABÈ for the Physics Lab

31

%*fill* draws and fills a polygon with specified vertices
fill([0 1 0.5],[0 0 1],'r');

Introduction to MAT-
LABÈ for the Physics Lab

32

Systems of Linear Equations
Let us solve the following system of linear equations

% to solve this we will have to create a coefficient matrix A and b so that
% the systems of equation can be written as $Ax = b$. To solve it we will use
% the ** (left division)
A = [1 2 -3;-3 -1 1;1 -1 1];
b = [5;-8;0];
x = A\b

x =

 2.0000
 3.0000
 1.0000

Introduction to MAT-
LABÈ for the Physics Lab

33

Linear Algebra
mat = [1 2 -3;-3 -1 1;1 -1 1];
r = rank(mat) % calculates the rank of the above matrix
d = det(mat) % calcualtes the determinant of the matrix
E = inv(mat) %calculates the inverse of the matrix
[V,D] = eig(mat) % eigen value decomposition

r =

 3

d =

 -4.0000

E =

 0 -0.2500 0.2500
 -1.0000 -1.0000 -2.0000
 -1.0000 -0.7500 -1.2500

V =

 -0.6641 + 0.0000i -0.6641 + 0.0000i 0.0274 + 0.0000i
 0.3952 - 0.5029i 0.3952 + 0.5029i 0.8257 + 0.0000i
 0.1989 + 0.3321i 0.1989 - 0.3321i 0.5634 + 0.0000i

D =

 0.7085 + 3.0148i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.7085 - 3.0148i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i -0.4171 + 0.0000i

Polynomials
Matlab represnts a polynomials by a vector of coefficients

 is represented by a vector [a b c d]

P = [1 0 -2]; % represents x^2-2
P = [2 0 0 0]; % represents $2x^3$

To get roots use the function roots

P = [1 0 -2];

Introduction to MAT-
LABÈ for the Physics Lab

34

r = roots (P)
P = poly(r) % this creats the polynomial from the roots*)

r =

 1.4142
 -1.4142

P =

 1.0000 -0.0000 -2.0000

We can evaluate polynomials at one or many points

P = [1 0 -2];
x0 = 4;
y0 = polyval(P,x0)

y0 =

 14

or at many points

P = [1 0 -2];
x = [4 3 2];
y = polyval(P,x)

y =

 14 7 2

Polynomial Fitting
To find the best second order polynomial that fits the points (-1, 0), (0, -1) and (2, 3) we do the following:

X = [-1 0 2];
Y = [0 -1 3]
p2 = polyfit (X, Y, 2)

% Now check the fitness by plotting the fucntion

plot(X,Y,'o', 'MarkerSize', 10)
hold on;
x = -3:.01:3;
plot(x, polyval(p2,x), 'r--')

Introduction to MAT-
LABÈ for the Physics Lab

35

hold off;

Y =

 0 -1 3

p2 =

 1.0000 -0.0000 -1.0000

Nonlinear Root Finding
% *fzero* function calculate the roots of _any _ arbitrary function.
% You need to pass the function ans give na initial guess of the root
% It by default uses Newton's method to find the root. To find multiple
% root you will have to pass multiple initial guesses
x = -10:0.001:10;
plot(x, besselj(1, x))

y = inline('besselj(1, x)', 'x'); % creats a funcntion y(x) = cos(exp(x))
 % + x.^2 -1

% note the use of the .^ instead of ^

Introduction to MAT-
LABÈ for the Physics Lab

36

x = fzero(y, 1)

x =

 3.6401e-26

Creating functions
There are three basic ways to create functions * inline function (example in the root finding) * anonymous
function * using a .m file and saving it to the workspace

See MATLAB documentation for more details A function that might be helpful for a fucntion with optional
inputs is nargin. We did an example of it in during the tutorial session. Please type *doc nargin * in the
command line to get more details

A function is a group of statements that together perform a task. In MATLAB, functions are defined in
separate files. The name of the file and of the function should be the same.

Functions operate on variables within their own workspace, which is also called the local workspace, sepa-
rate from the workspace you access at the MATLAB command prompt which is called the base workspace.

Functions can accept more than one input arguments and may return more than one output arguments

Syntax of a function statement is: function [out1,out2, ..., outN] = myfun(in1,in2,in3, ..., inN)

Introduction to MAT-
LABÈ for the Physics Lab

37

The following function named mymax should be written in a file named mymax.m. It takes five numbers
as argument and returns the maximum of the numbers. Create a function file, named mymax.m and type
the following code in it :

% function max = mymax(n1, n2, n3, n4, n5)
% %This function calculates the maximum of the
% % five numbers given as input
% max = n1;
% if(n2 > max)
% max = n2;
% end
% if(n3 > max)
% max = n3;
% end
% if(n4 > max)
% max = n4;
% end
% if(n5 > max)
% max = n5;
% end

The first line of a function starts with the keyword function. It gives the name of the function and order of
arguments. In our example, the mymax function has five input arguments and one output argument.

The comment lines that come right after the function statement provide the help text. These lines are
printed when you type:

help mymax MATLAB will execute the above statement and return the following result:

 _This function calculates the maximum of the five numbers given as
 input_

You can call the function as:

mymax(34, 78, 89, 23, 11) MATLAB will execute the above statement and return the following result:

ans = 89

Anonymous Functions

An anonymous function is like an inline function in traditional programming languages, defined within
a single MATLAB statement. It consists of a single MATLAB expression and any number of input and
output arguments.

You can define an anonymous function right at the MATLAB command line or within a function or script.

This way you can create simple functions without having to create a file for them.

The syntax for creating an anonymous function from an expression is

 f = @(arglist)expression

Example In this example, we will write an anonymous function named power, which will take two numbers
as input and return first number raised to the power of the second number.

Introduction to MAT-
LABÈ for the Physics Lab

38

power = @(x, n) x.^n; % creats a function of x and n. note the use of .^ ;
% this way we can pass on vectors
result1 = power(7, 3)
result2 = power(49, 0.5)
result3 = power(10, -10)
result4 = power (4.5, 1.5)
%

result1 =

 343

result2 =

 7

result3 =

 1.0000e-10

result4 =

 9.5459

Primary and Sub-Functions

Any function other than an anonymous function must be defined within a file. Each function file contains a
required primary function that appears first and any number of optional sub-functions that comes after the
primary function and used by it. Primary functions can be called from outside of the file that defines them,
either from command line or from other functions, but sub-functions cannot be called from command line
or other functions, outside the function file.

Sub-functions are visible only to the primary function and other sub-functions within the function file that
defines them.

Example

Let us write a function named quadratic that would calculate the roots of a quadratic equation. The function
would take three inputs, the quadratic co-efficient, the linear co-efficient and the constant term. It would
return the roots.

The function file quadratic.m will contain the primary function quadratic and the sub-function disc, which
calculates the discriminant.

Create a function file quadratic.m and type the following code in it :

 function [x1,x2] = quadratic(a,b,c)
 %this function returns the roots of
 % a quadratic equation.
 % It takes 3 input arguments

Introduction to MAT-
LABÈ for the Physics Lab

39

 % which are the co-efficients of x2, x and the constant term
 % It returns the roots
 d = disc(a,b,c);
 x1 = (-b + d) / (2*a);
 x2 = (-b - d) / (2*a);
 end % end of quadratic

 function dis = disc(a,b,c)
 %function calculates the discriminant
 dis = sqrt(b^2 - 4*a*c);
 end % end of sub-function

You can call the above function from command prompt as:

 quadratic(2,4,-4)

 MATLAB will execute the above statement and return the following
 result:

ans = 0.7321

Nested Functions

You can define functions within the body of another function. These are called nested functions. A nested
function contains any or all of the components of any other function.

Nested functions are defined within the scope of another function and they share access to the containing
function's workspace.

A nested function follows the following syntax:

 function x = A(p1, p2)
 ...
 B(p2)
 function y = B(p3)
 ...
 end
 ...
 end

Example

Let us rewrite the function quadratic, from previous example, however, this time the disc function will
be a nested function.

Create a function file quadratic2.m and type the following code in it:

 function [x1,x2] = quadratic2(a,b,c)
 function disc % nested function
 d = sqrt(b^2 - 4*a*c);
 end % end of function disc
 disc; % caled the neested function to calculate d
 x1 = (-b + d) / (2*a);
 x2 = (-b - d) / (2*a);

Introduction to MAT-
LABÈ for the Physics Lab

40

 end % end of function quadratic2

You can call the above function from command prompt as:

 quadratic2(2,4,-4)
MATLAB will execute the above statement and return the following result:

ans = 0.7321

Private Functions

A private function is a primary function that is visible only to a limited group of other functions. If you do
not want to expose the implementation of a function(s), you can create them as private functions.

Private functions reside in subfolders with the special name private. They are visible only to functions in
the parent folder.

Example Let us rewrite the quadratic function. This time, however, the disc function calculating the dis-
criminant, will be a private function.

Create a subfolder named private in working directory. Store the following function file disc.m in it:

 function dis = disc(a,b,c)
 %function calculates the discriminant
 dis = sqrt(b^2 - 4*a*c);
 end % end of sub-function

Create a function quadratic3.m in your working directory and type the following code in it:

 function [x1,x2] = quadratic3(a,b,c)
 %this function returns the roots of
 % a quadratic equation.
 % It takes 3 input arguments
 % which are the co-efficients of x2, x and the
 %constant term
 % It returns the roots
 d = disc(a,b,c);
 x1 = (-b + d) / (2*a);
 x2 = (-b - d) / (2*a);
 end % end of quadratic3

You can call the above function from command prompt as:

quadratic3(2,4,-4)

MATLAB will execute the above statement and return the following result:

ans = 0.7321

Numerical Differentiation and Integration
Matlab can differentiate numerically. Let's look at an example. basically for this you will supply a vector
and it will find the derivatives

Introduction to MAT-
LABÈ for the Physics Lab

41

x = 0:0.01:2*pi;
y = sin(x);
dydx = diff(y)./diff(x);
plot(x, y, 'r-', x(2:end), dydx, 'b-') % note that the length of dydx is
% one less than the length of x

You can also operate on matrices

mat = [1 3 5; 4 8 6];
dm = diff(mat, 1, 2) %first difference of mat along the 2nd dimension
[dx, dy] = gradient(mat) %returns the gradient. the function gradiaent
% returns to vectors

dm =

 2 2
 4 -2

dx =

 2 2 2
 4 1 -2

dy =

Introduction to MAT-
LABÈ for the Physics Lab

42

 3 5 1
 3 5 1

For integration you can use either Adaptive Simpson's quadrature or trapezoidal rule. Adaptive meaning
the sampling of the function depends on the oscillatory nature of the funciton. Hence this should be your
first preference for any oscillatory function

For adaptive input must be a function

Trapezoidal rule only works on a vector

q2 = quad(@(x) sin(x).*x, 0, pi)% this does the integration with respect to
% x from 0 to pi

q2 =

 3.1416

x = 0:0.01:pi;
z = trapz(x,sin(x)) % z is the integral of sin(x) from 0 to pi

z =

 2.0000

Another example:

x = 0:0.01:pi;
z2 = trapz(x, sqrt(exp(x))./x)

z2 =

 Inf

Solving Differential equation
There are a number of tools available to solve differential equaiton. The most popular and generalized is
ode45 . There is another function dsolve which is simpler to implement and can solve simple differential
equaltion. For a system of equation use ode45

Let us look in to an example

Consider the nonlinear system

Introduction to MAT-
LAB® for the Physics Lab

43

Think of as the coordinates of a vector x. In MATLAB its coordinates are x(1),x(2),x(3) so I can
write the right side of the system as a MATLAB function

f = @(t,x) [-x(1)+3*x(3);-x(2)+2*x(3);x(1)^2-2*x(3)];

%The numerical solution on the interval $[0,1.5]$ with $x(0) = 1,y(0) = 1/2,
%z(0) = 3$ is

[t,xa] = ode45(f,[0 1.5],[0 1/2 3]);

We can plot the components using plot. For example, to plot the graph of I give the command:

plot(t,xa(:,2))
title('y(t)')
xlabel('t'), ylabel('y')
%

We can plot the solution curve in phase space using plot3.

plot3(xa(:,1),xa(:,2),xa(:,3))

Introduction to MAT-
LAB® for the Physics Lab

44

grid on
title('Solution curve')

Suppose I just want to plot the part which corresponds approximately to the time interval . Re-
member that the produced by ode45 is a vector with a lot of components. We want to know which com-
ponent corresponds approximately to . One way is to look at the values of , but with a very long
list of values this wouldn't be easy. So first I'll find how many components has, using the command size.

size(t)

ans =

 69 1

This tells us that has 69 rows and 1 column. Now We do some guessing: t(46) is two-thirds down the
list of components of so We can look at it.

t(46)

ans =

 0.8747

Introduction to MAT-
LAB® for the Physics Lab

45

We look at components with slightly larger index:

t(47:50)

ans =

 0.9122
 0.9497
 0.9872
 1.0247

We see that t(49) and t(50) are the closest, one a little larger, the other a little smaller than 1. We'll use 49
as our index. (You can probably do this more elegantly using the Events option.) So we can plot the tail
of the solution curve with the following command.

plot3(xa(49:69,1),xa(49:69,2),xa(49:69,3))
grid on
title('Tail of solution curve')

% *Using ode45 on a system with a parameter*
%
% Suppose we want to change the system to
%
% $x' = -x+az$
%
% $y' = -y+2z$
%
% $z' = x^2-2z.$
%
% and we would like to use a loop to solve and plot the solution for
% $a = 0,1,2$. We will use the following MATLAB code

syms t x a % we are using MATLABs symbolic toolbox. this command tells
% matlab that these are my variables without any value

g = @(t,x,a)[-x(1)+a*x(3);-x(2)+2*x(3);x(1)^2-2*x(3)] % Create the fucntion

for a = 0:2
 [t,xa] = ode45(@(t,x) g(t,x,a),[0 1.5],[1 1/2 3]);
 figure
 plot(t,xa(:,2))
 title(['y(t) for a = ',num2str(a)'])
end

g =

 @(t,x,a)[-x(1)+a*x(3);-x(2)+2*x(3);x(1)^2-2*x(3)]

Introduction to MAT-
LAB® for the Physics Lab

46

Introduction to MAT-
LAB® for the Physics Lab

47

Introduction to MAT-
LAB® for the Physics Lab

48

References
For more details you can check the following places

1. MATLAB Documentation

2. Matlab: A Practical Introduction to Programming and Problem Solving

3. MATLAB: An Introduction with Applications

4. Essential MATLAB for Engineers and Scientists

5. A First Course in Computational Physics

6. Scientific Computing with MATLAB and Octave

7. Ofcourse the internet is full of examples including some I have reproduced here.

Published with MATLAB® R2013a

	Table of Contents
	Help/Docs
	Variables
	Vectors
	Matrices
	save/clear/load
	Scalar Operations
	Built-in functions
	Transpose
	Addition and Subtraction
	Element-wise Functions
	Functions for automatic initialization
	Vector and Matrix Indexing
	The Colon (:) operator
	Basic Plotting
	Saving Figures, inserting Legends and titles
	Visulaizing matrices
	Surface Plot
	Contour plot
	Other specialized plotting funcitons
	Systems of Linear Equations
	Linear Algebra
	Polynomials
	Polynomial Fitting
	Nonlinear Root Finding
	Creating functions
	Numerical Differentiation and Integration
	Solving Differential equation
	References

