
Introduction to MATLAB

Jefferson Flórez, Aldo C. Mart́ınez,∗ and Yazid Braik
Department of Physics, University of Ottawa - PHY3902

(Dated: September, 2020)

CONTENTS

I. Preliminaries 1

II. Matrices and Arrays 2

III. 2D plots 2

IV. Workspace (.mat) and Scripts (.m) files 3

V. 3D plots 3

VI. Solving systems of linear equations 4

VII. Fit nonlinear regression model 4

VIII. Numerical differentiation and integration 4

IX. Differential equations 5

X. Exercises. 6

Exercise 0. 7

Exercise 1. Regions on a plane. 7

Exercise 2. Diffraction of a plane wave by a
circular aperture. 7

Exercise 3. Nonlinear fitting from a laser beam
transverse profile. 7

Exercise 4. Solving the heat equation with
boundary conditions. 8

Exercise 5. 8

I. PRELIMINARIES

The default desktop layout contains the panels described
in Table I.

∗ amart224@uottawa.ca

Panel Functions
Current displays the files in the current working
Folder folder
Command contains the command line, indicated by the
Window prompt (>>), where the input commands

are introduced
Workspace displays the data imported, defined or obtained

during the calculations

TABLE I. MATLAB panels.

In MATLAB, we create data arrays and use them as in-
put in predefined functions. For example, let’s define
variables x and n by typing the following statements in
the Command Window:

>> x = pi
x =

3.1416
>> n = 2
n =

2

You get in the Workspace panel the two new variables.
Now, let’s compute cos(2π):

>> cos(n*x)
ans =

1

The result is 1. Note that this result appears in the
Workspace as ans, short for “answer”, which is the de-
fault name for an undefined variable. We can define the
output result as y by typing

>> y = cos(n*x)
y =

1

Now, the result appears in the Workspace as y. You can
call this new variable to make further calculations:

>> asin(y)
ans =

1.5708

which is π/2. You can suppress the output of any calcu-
lation in the Command Window by ending a statement
with a semicolon:

>> asin(y);

You can also look for previous commands by pressing the
up and down arrows in your keyboard.

mailto:amart224@uottawa.ca

2

II. MATRICES AND ARRAYS

In comparison to other programming languages, MAT-
LAB is particularly suitable for numerical calculations
based on data arrays (indeed, MATLAB is an abbrevi-
ation for “matrix laboratory”). Therefore, any variable
in MATLAB is handle as a data array, regardless of its
dimension. For example, the variables x, n and y defined
in Sec. I are 1× 1 data arrays. To create higher dimen-
sion data arrays, like a row vector with two elements,
we separate those elements with either a comma (,) or a
blank space:

>> a = [1 2];

We see in the Workspace the two values of the row vector
a explicitly. To define a two-dimensional array (matrix),
like a 3×3 matrix, we separate each row with semicolons:

>> b = [1 2 3; 4 5 6; 7 8 9];

We can also define a data array using the functions ones,
zeros, or rand. For example, the following statement
creates a 5×5 matrix with random numbers from 0 to 1.

>> c = rand(5,5);

Note that in the Workspace we have the dimensions of
the variable c in the field “Value” instead of the actual
numbers defining c. If you want to see the matrix c ex-
plicitly, you can either type c in the Command Window
(without semicolon) or double-click this variable in the
Workspace.

You can evaluate functions on a data array. For example,

>> a - 1;
>> cos(b);
>> exp(c);

You can also evaluate any matrix operation in MATLAB,
like matrix transpose (’), matrix inversion (inv), and
matrix multiplication (*):

>> c’;
>> inv(c);
>> b * c;

In order to do element-wise calculations between data
arrays, we use a dot in front of the operation symbol:

>> c.*c;
>> c.^2;

If the data array has complex entries, all the previous
functions and operations can be evaluated as well. In
the particular case of the matrix transpose, the rows and
columns are not only switched, but the array elements are
complex conjugated. For example, let’s define matrix d
as

>> d = [1+i 2-i; 3*i 1+4*i];

The matrix transpose of d is

>> d’
ans =

1.0000 - 1.000i 0.0000 - 3.000i
2.0000 + 1.000i 1.0000 - 4.000i

If you only want to calculate the transpose of a com-
plex matrix without complex conjugating the matrix
elements, you must use the command .’ instead. For
example, d.’

You can access any set of elements of a given matrix.
Coming back to the matrix b defined above, we can get
the second element in the second column in the following
way:

>> b(2,2)
ans =

5

If we want the second column of matrix b we should type

>> b(:,2)
ans =

2
5
8

You can find the eigenvalues and eigenvectors of a matrix
using the function eig in the following way:

>> [V,D] = eig(b);

The columns of matrix V are the eigenvectors of b, and
the matrix D is a diagonal matrix with its non-zero ele-
ments being the eigenvalues of b.

III. 2D PLOTS

To plot a single variable function, you first need to define
a set of values on which the function will be evaluated.
For example, if we want to plot the sine function, we first
define the variable x from 0 up to 2π in steps of 0.01:

>> x = 0:0.01:2*pi;

Then, we plot the sine functions using the command
plot:

>> plot(x,sin(x))

If you do not specify the independent variable in the
plot command, MATLAB uses the natural numbers
1, 2, 3, . . . in the horizontal axis. We can add other
functions in the same plot using the command hold on
and hold off:

>> figure(1)
>> hold on
>> p = plot(x, x.^(1/3),’LineWidth’,1,’Color’,[1,0,0])
>> plot(x, x.^(1/2),’LineWidth’,1,’Color’,[0.7,0.3,0])

3

>> plot(x, x,’LineWidth’,1,’Color’,[0,1,0])
>> plot(x, x.^2,’LineWidth’,1,’Color’,[0.5,0.5,0])
>> plot(x, x.^3,’LineWidth’,1,’Color’,[0,0,1])
>> hold off

You can add a legend to the plot using the command
legend:

>> legend(’x^{1/3}’,’x^{1/2}’,’x’,’x^2’,’x^3’)

We can also add axis labels, a plot title and increase the
font size:

>> ylabel(’f(x)’)
>> xlabel(’x axis’)
>> title(’Polynomials’)
>> set(gca,’fontsize’,18)

Finally, we save our plot in Portable Network Graphics
(.png) format using the command saveas, as shown be-
low. The resulting plot is shown in Fig. 1.

>> saveas(gca,’2Dplot.png’)

FIG. 1. A plot of one dimensional functions.

The properties of each line, like style (solid, dashed, dot-
ted, etc), color and width, can be modified in the instruc-
tion plot. For example, if you modify the arguments of
the plot command in the following way you will get a
dashed, blue, and thick line for the sine function in Fig.
1:

>> plot(x,sin(x),’--’,’color’,[0 0 1],...
’linewidth’,4)

The color is specified by means of the corresponding RGB
code (with each of the three numbers going from 0 to 1).

IV. WORKSPACE (.MAT) AND SCRIPTS (.M)
FILES

You can save the data appearing in the Workspace using
the command save(’data.mat’), where data is an

arbitrary name given to the file and .mat the extension.
You can load any .mat file into the Workspace using
the command load(’data.mat’). To delete the current
data in the Workspace you need to use the command
clear. All saved and loaded .mat files must be in the
Current Folder.

You can also save a set of commands in a script file
and run all of them with a single enter. To open a
new script file, arbitrarily named load(’script1’),
you must type edit(’script1.m’). MATLAB will ask
you if you want to create the corresponding file. After
clicking “Yes”, a new tab will open in a panel called
Editor. You will also see your new file in the Current
Folder. To run your script file, you just need to use the
command run(’script1.m’). Every time that you run
your script, MATLAB saves automatically your script
file. If you want to insert comments in your script file,
you must use the percentage symbol (%) before your
comment (the same as in LATEX).

For example, the set of commands to get the 2D plot in
Fig. 1 are the following:

clear
close all
x = 0:0.01:2*pi;
plot(x,sin(x))
hold on
plot(x,cos(x))
plot(x,tan(x))
hold off
legend(’sin’,’cos’,’log’)
xlabel(’x’)
ylabel(’f(x)’)
title(’Trigonometric functions’)
set(gca,’fontsize’,18)
saveas(gca,’2Dplot.png’)

It is recommended to start our script with the commands
clear and close all in order to start from scratch our
calculations and close any previous figure window.

V. 3D PLOTS

There are different commands to plot 3D functions. How-
ever, the more general one is surf. The following script is
an example on how to plot a 3D plot using this command,
it also shows a top view of the same plot as obtained by
the command pcolor:

clear
close all
Z = peaks(50);

surf(Z)
hold on
h = pcolor(Z)

4

hold off
set(h, ’ZData’,-10 + 0*Z)
set(gca,’fontsize’,18)
saveas(gca,’3Dplot.png’)

The resulting 3D plot is shown in Fig. 2.

FIG. 2. A 3D plot using with a top view of itself.

VI. SOLVING SYSTEMS OF LINEAR
EQUATIONS

Let’s try to solve the following system of linear equation:

x+ 2y − 3z = 5

3x− y + z = −8 (1)

x− y + z = 0

Note that this system of equations can be written as

Ax = b, (2)

with

A =

1 2 −3
3 −1 1
1 −1 1

 , x =

xy
z

 , b =

 5
−8
0

 . (3)

To solve this system of linear equation in MATLAB, we
first define A and b, and then introduce the command

>> x = A\b

MATLAB gives the the solution to the system of linear
equation as a column vector. Note that we have used a
backslash (\) in contrast to the usual slash (/).

VII. FIT NONLINEAR REGRESSION MODEL

You can fit experimental data to nonlinear functions in
MATLAB. In the following example, we fit the voltage
of a capacitor as a function of time according to the ex-
pression

V (t) = V0e
−t/RC , (4)

with V0 and RC the initial voltage in the capacitor and
the characteristic time of the RC circuit. In MATLAB,
we introduce these constants as the elements of a row
vector b.

clear
close all

data = load(’ExperimentalData1.txt’);
x = data(:,1);
y = data(:,2);

modelfun = @(b,x) b(1)*exp(x/b(2));
b = [5 -1];
mdl = fitnlm(x,y,modelfun,b);

plot(x,y,’ob’);
hold on;
plot(x,predict(mdl,x),’-b’,’linewidth’,1.5);
legend(’data’,’fit’);
xlabel(’time (s)’)
ylabel(’voltage (V)’)
set(gca,’fontsize’,18)
saveas(gcf,’NonlinearFit1.png’)

The resulting fit is shown in Fig. 3. You
can extract the fitting parameters and their
respective standard deviation via the com-
mands mdl.Coefficients.Estimate(1) and
mdl.Coefficients.SE(1), respectively, where the
number 1 refers to the first parameter (b(1)), for ex-
ample. The R2 value can be obtained via the command
mdl.Rsquared.Ordinary.

VIII. NUMERICAL DIFFERENTIATION AND
INTEGRATION

In MATLAB we can numerical differentiate a function
using the command diff. First, we define a vector x
with the independent variable values, and then evalu-
ate the function on these values to get a second vector
y. The derivative of the function is then obtained as
diff(y)./diff(x). For example,

clear
close all
x = 0.1:0.01:10;
y = log(x);
derivative = diff(y)./diff(x);

5

FIG. 3. Nonlinear fit to the voltage of a capacitor in an RC
circuit.

plot(x,y,’-b’,’linewidth’,1.5)
hold on
plot(x(2:end),derivative,’--r’,’linewidth’,1.5)
hold off
legend(’log(x)’,’derivative’);
xlabel(’x’)
ylabel(’y’)
set(gca,’fontsize’,18)
saveas(gcf,’Differentiation.png’)

The resulting plot is shown in Fig. 4. Since the command
diff calculates differences between adjacent elements of
x and y, the variable derivative has one fewer element
than x or y. Therefore, we plot derivative starting at
the second value of x.

FIG. 4. Derivative of the function log(x).

You can also plot the analytic result for the derivative
of log(x), 1/x, and observe the discrepancy between the

numerical and the analytic result. Such a discrepancy
can be reduced by increasing the number of elements in
the vector x within the same interval, i.e. by reducing
the step.

There are two different commands to numerically cal-
culate definite integrals in MATLAB, depending on
whether we are dealing with analytic functions or vec-
tors. In the first case, we use the command integral as
shown below:

f = @(x) sin(x) ./ x
integral(f,-1,1)

The numerical result is 1.8922. We can use the command
format long to display more decimal digits for the
integral result.

If we want to integrate a vector instead of a function,
we use the command trapz. For example, let’s find the
integral for the experimental data in Fig. 3:

data = load(’ExperimentalData1.txt’);
x = data(:,1);
y = data(:,2);
trapz(x,y)

The result is 2.2497.

IX. DIFFERENTIAL EQUATIONS

To solve ordinary differential equations (ODEs) in MAT-
LAB you have several commands or solvers depending
on the specific problem. However, the ode45 is the most
general and versatil one. For example, let’s suppose we
want to find the motion of a particle given by the follow-
ing system of ODEs:

x′ = −x− 2y + z

y′ = x− 2y + 3z (5)

z′ = x− y + z.

Each of the three spatial coordinates x, y and z is a
function of time t. We define this system of ODEs by
means of a function f depending on two variables t and
x, where x is now a vector with three components x(1),
x(2) and x(3), referring to the three spatial coordinates
x, y and z. This is,

f = @(t,x) [-x(1)-2*x(2)+x(3);...
x(1)-2*x(2)+3*x(3);...
x(1)-x(2)+x(3)];

The numerical solution in the interval t ∈ (0, 10) with
the initial conditions x(0) = 1, y(0) = 1/2 and z(0) = 3
is

[t,x] = ode45(f,[0 10],[0 1/2 3]);

6

Note that x is a three-column matrix, each of the columns
describing x(1), x(2) and x(3), respectively. Also note
that t is a column vector with the same number of rows as
x. Let’s plot the result for the three dependent variables:

clear
close all
plot(t,x(:,1),’-b’,’linewidth’,1.5)
hold on
plot(t,x(:,2),’--r’,’linewidth’,1.5)
plot(t,x(:,3),’:g’,’linewidth’,2)
hold off
legend(’x(t)’,’y(t)’,’z(t)’);
xlabel(’t’)
ylabel(’spatial coordinates’)
set(gca,’fontsize’,18)
saveas(gcf,’ODEs2Dplot.png’)

The resulting plot is shown in Fig. 5.

FIG. 5. Solution to the ODE system in Eq. (5).

We can plot the resulting trajectory for the particle in a
3D plot using the command plot3:

plot3(x(:,1),x(:,2),x(:,3),’-b’,’linewidth’,1.5)
grid on
xlabel(’x(t)’)
ylabel(’y(t)’)
zlabel(’z(t)’)
set(gca,’fontsize’,18)
saveas(gcf,’ODEs3Dplot.png’)

Fig. 6 shows the 3D particle trajectory.

If you prefer animations, you can use the following script
to visualize the particle trajectory and export it to a .avi
file:

v = VideoWriter(’Animation.avi’);
v.FrameRate = 10;
open(v);

FIG. 6. Solution to the ODE system in Eq. (5).

for tau=1:size(t)
plot3(x(tau,1),x(tau,2),x(tau,3),’ob’,...

’markerfacecolor’, ’b’)
axis([-4 2 -5 5 -4 4]);
grid on
xlabel(’x(t)’)
ylabel(’y(t)’)
zlabel(’z(t)’)
set(gca,’fontsize’,18)
frame = getframe(gcf);
writeVideo(v,frame)

end

close(v);

After running your script, the video will appear in your
MATLAB folder as a .avi file.

Note that we have used the loop for for the very first
time. Its purpose is to repeat a specified number of times
the instructions within the for and the respective end
command. In the particular case of the previous script,
the repetition number is given by the number of possible
values that the variable tau can take, ranging from 1
up to the size of the variable t (in unit steps). Also,
note that tau is used to retrieve the position coordinates
(x(t), y(t), z(t)) at each time t.

X. EXERCISES.

Exercises are due on Wednesday October 14th
at 11:59 pm. Write your answers in a la-
tex file (e.g. https://www.overleaf.com/read/
sqmzqbfkpfrf) and include your plots. Send
only the pdf and your MATLAB codes (.m file)
to amart224@uottawa.ca. The MATLAB code
should be readable and easy to ejecute.

https://www.overleaf.com/read/sqmzqbfkpfrf
https://www.overleaf.com/read/sqmzqbfkpfrf

7

EXERCISE 0.

Create a random vector x of dimension 100. Create a
new vector y whose ith entry is given by yi = xi ∗ xi+1.
Note that the dimension of y is 99.

EXERCISE 1. REGIONS ON A PLANE.

Pick your favourite non-degenerate conic section (el-
lipse, hyperbole or parabola).

1. What is the equation that describes your conic?

2. Your conic divides the plane in an outer and inner
region. Which region do you get when the equality
sign is changed for an inequality?

3. Using the command "imagesc", show your conic
and the inner and outer regions of the plane created
by it. Give your conic some width in the plot such
that it is visible, e.g., if your figure were a circle
draw a ring.

4. Label, edit and save your plots.

EXERCISE 2. DIFFRACTION OF A PLANE
WAVE BY A CIRCULAR APERTURE.

In this exercise you will visualize the Fraunhofer (also
known as far field) diffraction pattern of a plane wave,
at wavelength λ, after passing by a circular aperture of
radius ω. Such diffraction pattern is known as an Airy
pattern and it is given by the following equation

I(x, y) =
(ω2

λz

)2
(
J1

(
2π ω

λz

√
x2 + y2

)
ω
λz

√
x2 + y2

)2

. (6)

Where (x, y) are the coordinates of the observation plane,
and z is the distance between the aperture and the ob-
servation plane. J1 is a Bessel function of the first kind
implemented in matlab with the command "besselj".

1. Define in MATLAB the parameters involved in Eq.
6. Suppose ω = 1 mm, a He:Ne laser i.e., λ =
0.633 µm and z = 50 m (which assures the far field
condition).

2. Plot the Airy pattern in two dimensions (x, y).
Choose a good window size to appreciate the max-
ima and minima. You should get a typical image
of an Airy pattern e.g., https://en.wikipedia.
org/wiki/Airy_disk.

3. The Airy pattern reaches its maxima at the center
i.e., (x, y) = (0, 0), plot the intensity at y = 0.
You are plotting a function of one variable, so the
command ’plot’ gives a good plot.

4. Label, edit and save your plots.

EXERCISE 3. NONLINEAR FITTING FROM A
LASER BEAM TRANSVERSE PROFILE.

1. Import the file “Beam1.png” to your MATLAB
folder, this image is a record of the 2D intensity
I(x, y) of a laser beam. You can download it from
https://drive.google.com/drive/folders/
1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=
sharing.

2. Which type of image is it (use the command
"image" to visualize it)? Display the 2D image
with colors with a colormap different from the
default one of matlab. Use the matlab manual
”help colormap” for details of the command.

3. 1D fit. Integrate the image along the x direction to
obtain the intensity along y: I(y) =

∫∞
−∞ I(x, y)dx.

Normalize I(y) to its maximum value, such that
the maximum value now is equal to one.

A Gaussian function is given by the equation

G(x) = A exp

(
− (x− x0)2

2σ2

)
, (7)

where x0 is the center of the distribution, σ its stan-
dard deviation and A is a constant that is unimpor-
tant for our purposes.

4. Fit a Gaussian function to I(y). Add a constant to
account for the background of the image.

5. Plot the experimental data and the fitted function
in the same plot. Add “position (a.u.)” and “In-
tensity (a.u.)” as your x and y axis labels. Do not
forget a legend for your plot.

6. What is the center of your fitted Gaussian? What
is its standard deviation?

7. Perform a fitting for I(x) =
∫∞
−∞ I(x, y)dy. Plot

your fitting and experimental data in the same plot.

8. Label, edit and save your plots.

9. How could you experimentally modify the width of
the beam in one direction only?

Parameter Value Std deviation
A
x0
σ

TABLE II. Fitting parameters.

https://en.wikipedia.org/wiki/Airy_disk
https://en.wikipedia.org/wiki/Airy_disk
https://drive.google.com/drive/folders/1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=sharing
https://drive.google.com/drive/folders/1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=sharing
https://drive.google.com/drive/folders/1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=sharing

8

EXERCISE 4. SOLVING THE HEAT EQUATION
WITH BOUNDARY CONDITIONS.

When solving partial differential equations it is necessary
to implement appropriate numerical methods. In this
exercise you will solve the heat equation in one dimension
with a given numerical method.
The boundary problem of the heat flow in one dimension
is represented by a scalar function u(x, t) that satisfies
the following partial differential equation

∂u

∂t
=
∂2u

∂2x
, (8)

subject to the initial condition

u(x, t = 0) = f(x), (9)

and boundary conditions

u(x = x0, t) = g(t), u(x = xf , t) = h(t). (10)

The idea of the numerical method is to discretize space(
x0, x1 = x0 + ∆x, x2 = x0 + 2 ∗ ∆x,, xj = x0 +

j ∗ ∆x, ..., xf
)

and time
(
t0, t1 = t0 + ∆t,, tn =

t0+n∗∆t, ..., tf
)
. The solution is obtained at every point

of time and space u(xj , tn). In this exercise we calcu-
late u(xj , tn+1) using adjacent points of space and time:

u(xj , tn+1) = u(xj , tn)+ ∆t
∆x2

(
u(xj+1, tn)−2∗u(xj , tn)+

u(xj−1, tn)
)

where ∆t and ∆x are the mesh sizes in time

and space respectively.

1. Get the template of a script from https:
//drive.google.com/drive/folders/

1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=
sharing.

2. As parameters define x0 = 0, xf = 1, g(t) = −1,
h(t) = 0, f(x) = sin(πx) + sin(2πx) + sin(π2x)− 1
and obtain the solution for t in [0, 0.5].

3. Input your code in the template following the com-
mented sections. The comments should guide you
to implement the method.

4. Your final result is your final code and a three di-
mensional plot of u(x, t).

EXERCISE 5.

We are receiving a message with N = 100 characters.
The transmission channel added noise to the message by
performing a permutation p, of the same dimension N
as the message. Assume that the channel was character-
ized and p is given (use the command ’randperm’), create
a program to reorder the message into its original form.
The program has to display the original received message
(i.e., the permutted message), the reordering permuta-
tion and the corrected message.

For example, if N = 4 we should get the message
’hope’. The transmission line performs the permuta-
tion p = [4,2,1,3], therefore the receiver gets the message
’eoph’. To obtain the original message the receiver needs
to perform the permutation p

′
= [3,2,4,1].

For this message report your reasoning to create the pro-
gram.

https://drive.google.com/drive/folders/1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=sharing
https://drive.google.com/drive/folders/1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=sharing
https://drive.google.com/drive/folders/1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=sharing
https://drive.google.com/drive/folders/1lWYdt61tDzPuQTFxKXAj9kj7Svof0gca?usp=sharing

	Introduction to MATLAB
	Contents
	Preliminaries
	Matrices and Arrays
	2D plots
	Workspace (.mat) and Scripts (.m) files
	3D plots
	Solving systems of linear equations
	Fit nonlinear regression model
	Numerical differentiation and integration
	Differential equations
	Exercises.
	Exercise 0.
	Exercise 1. Regions on a plane.
	Exercise 2. Diffraction of a plane wave by a circular aperture.
	Exercise 3. Nonlinear fitting from a laser beam transverse profile.
	Exercise 4. Solving the heat equation with boundary conditions.
	Exercise 5.

